An Abstract Device Definition to
Support the Implementation of a
High-Level Point-to-Point
Message-Passing Interface

William Gropp
FEwing Lusk
Mathematics and Computer Science Division
Argonne National Laboratory
gropp@mcs.anl.gov
lusk@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory

March 5, 1995

PREPRINT MCS-P342-1193

NTVONAL ¢
W g,

o0 ARGO,V%

W

(o)
»
kA
o
2
ON N\ 2
o

G

R

S
% 2
Sy o ©

Abstract

In this paper we describe an abstract device interface (ADI) that may
be used to efficiently implement message-passing systems. This work
was done to provide an implementation of the Message Passing Inter-
face (MPI); however, the interface is appropriate for many message-
passing systems. The ADI provides for both simple devices and those
capable of significant processing. We discuss some of the issues in the
implementation and provide a sample implementation for a “device”
that is capable of message-passing.

1 Introduction

Our goal is to define an abstract device (ADI) on which a high-level message-
passing application programmer interface (API) such as MPI can be imple-
mented. An important requirement is to support a variety of instantiations
of this device, from low-level FIFO’s and streams to high-level libraries such
as IBM’s EUI-H, the Intel NX communication library, or portable libraries
like Chameleon, p4, or PVM. Implementations of an API can thus consist al-
most entirely of portable code; dependencies on the low-level transport layer
are encapsulated inside the implementation of the abstract device. What
we have most in mind are low-level devices provided by individual MPP and
workstation network vendors, and so a primary consideration is that this
abstract-device approach not contribute any execution-time overhead to the
real device. A wide variety of possible device protocols are envisioned. The
design suggested here attempts to retain flexibility by listing a set of macros
that are to be defined by each side of the interface but invoked by the other
side. In other words, each side provides services to the other.

We do not discuss any of the issues related to providing reliable com-
munications, buffer protocols, or the implementation of the API side of the
interface. We assume that the global (or collective) operations are imple-
mented with the point-to-point operations, so our ADI has no global oper-
ations. This is an area for further development; we expect to add support
for collective operations in the future.

The design of the ADI is made more complex because we wish to allow
for but not require a range of possible enhanced functions of the device.
For example, the device may implement its own message-queuing and data-
transfer functions. In addition, the specific environment in which the device
operates can strongly affect the choice of implementation, particularly with
regard to how data is transferred to and from the user’s memory space.
For example, if the device code runs in the user’s address space, then it
can easily copy data to and from the user’s space. If it runs as part of the
user’s process (for example, as library routines on top of a simple hardware
device), then the ‘device’ and the API can easily communicate, calling each
other to perform services. If, on the other hand, the device is operating
as a separate process and requires a context-switch to exchange data or
requests, then it can be very expensive to switch between processes, and it

becomes important to minimize the number of such exchanges by providing
all information needed with a single call.

The original motivation for this work was the challenge of providing
an implementation of MPI [?] that was both portable and efficient. Al-
though MPI is a relatively large specification, the device-dependant parts
are small. By implementing MPI using the ADI, we could provide code that
could be shared among many implementations. Efficiency could be obtained
by vendor-specific proprietary implementations of the abstract device. For
this approach to be successful, the semantics of the ADI must not preclude
maximally efficient instantiations using modern message-passing hardware.
While this ADI has been designed to provide a portable MPI implementa-
tion, there is nothing about this part of the design that is specific to the
MPI library; this definition of an abstract device can be used to implement
any high-level message-passing library.

To help in understanding our design, it is useful to look at some ab-
stract devices for other operations, for example, for graphical display or for
printing. Most graphical displays provide for drawing a single pixel at an
arbitrary location; any other graphical function can be built using this sin-
gle, elegant primitive. However, high performance graphical displays offer a
wide variety of additional functions, ranging from block copy and line draw-
ing to 3-d surface shading. One approach for allowing an API (application
programmer interface) to access the full power of the most sophisticated
graphics devices without sacrificing portability to less capable devices is to
define an abstract device with a rich set of functions, and then provide soft-
ware emulations of any functions not implemented by the graphics device.
We will use the same approach in defining our message-passing ADI.

A message passing ADI must provide four sets of functions: specify-
ing a message to be sent or received, moving data between the API and
the message-passing hardware, managing queues of pending messages (both
sent and received), and basic information about the execution environment
(e.g., how many tasks are there). The ADI will provide all of these func-
tions; however, we expect that many message-passing hardware systems will
not provide queue management or elaborate data-transfer abilities. These
functions will be emulated through the use of auxiliary routines that we will
define in this paper.

In Section 2 we discuss the macro prototypes. An implementation based
on this interface is available by anonymous ftp from info.mcs.anl.gov in
‘pub/mpi/mpich.tar.Z’. At the end of this document is a complete im-
plementation of an abstract device using an existing message-passing sys-
tem (Chameleon [?]). In Section 4, we give examples of the execution se-
quence that the API and ADI may go through for a few common message-
passing operations. Section 5 we discuss some issues in the implementation
of the ADI on systems that support operations such as active messages and
message-passing co-processors.

2 The Abstract Device

In this section we discuss the operations that the device may perform. These
are in two categories: functions that the device must be able to perform,
and functions that are not required but that a system such as MPI can
exploit. In addition, there may be several ways in which an operation, such
as transferring data, can be performed. A device may specify its preference.

This section describes all of the operations. We first describe the inter-
face for sending and receiving messages because this will help introduce the
ADI and motivate the additional functions such as queue management. It
loosely conforms to the MPI interface; in particular, the terms blocking and
nonblocking have the meaning defined in the MPI standard [?].

2.1 Message-passing

A message consists of a message body (the data the user wishes to send or
receive), the length of the message body, a message tag (often called type)
used to distinguish between messages, a context-id, and a destination (for
sending) or source (for receiving). The context-id may be thought of as
additional bits in the message tag that are reserved to the API; in MPI the
context-id is used to implement communicators that are used in the imple-
mentation of safe libraries. Messages can be received in the API only by
exactly matching the context-id, and either matching the tag and source,
or specifying that any tag and/or source may be matched, in a message
received by the ADI. While the context-id may seem unfamiliar, most exist-
ing systems provide at least a single-bit context-id that is used to separate
user from system messages. For example, a message-passing system may
use a reserved bit to distinguish between point-to-point operations made by
the user and point-to-point operations used by the system to implement a
collective operation.

In addition, a message may be sent in either blocking or nonblocking
form. In the blocking form, the ADI will not return control to the API
until the message body is available for re-use. In a send, this means that the
message buffer has either been delivered or has been transferred into internal
memory. In a receive, it means that the message has been received. The
nonblocking form allows an API to provide the programmer with the ability
to overlap communication with computation. Moreover, The API must ask
the ADI about whether the message buffer is available before reusing it.

When sending a message, one of three modes may be used. These are:
standard, synchronous, and ready. In the synchronous mode, the ADI must
not return control to the API until the destination begins to receive the
message. In the ready mode, the ADI requires that a matching receive have
already been posted by the ADI at the destination; it is an error (with
undefined behavior) if the receive has not been posted. The standard mode
has no additional requirements.

four, with buffer-
ing, or 1is the
API responsible
for buffering?

Table 1: Fields in message handles available to the device

Field Meaning

handle_type | Type of handle (MPIR_SEND or MPIR_RECV).

dest Destination rank (send)

source Source rank (receive)

tag Tag value

context_id | Context id value

completed Flag for whether communication opperation
is completed

mode Sending mode (MPIR_STANDARD, MPIR_READY,
MPIR_SYNCHRONOUS) (send)

dev_shandle | Device’s send handle (see Section 2.2)

dev_rhandle | Device’s receive handle (see Section 2.3)

datatype MPI-style datatype description

It is possible to implement all of these send and receive operations by
with an ADI that provides only one send and one receive, e.g., the nonblock-
ing send and nonblocking receive. The synchronous and ready send modes
are relatively easily implemented on top of this; a blocking send is just a
nonblocking send followed by a call to complete that send. This approach,
while simplifying the ADI design, can pay a performance penalty that we
wish to avoid. We will point out specific instances of these penalties below.
We point out that while the ADI design contains entries for these differ-
ent operations, the ADI itself can choose an implementation that trades
efficiency for simplicity.

In our ADI, a message is specified by a Request structure. The relevant
elements of this structure are shown in Table 1. This structure is used by
the API and will contain additional fields.

Note that there are no fields specifying the location of the data; access
to the message body is discussed separately in Section 2.5. In addition, the
fields dev_shandle and dev_rhandle are provided; these provide a place for
the ADI to store information about the message in the API’s data-structure.
These are described separately in Sections 2.2 and 2.3.

The Request structure is actually a union; if the type is MPTR_SEND, it
is a A_SHANDLE and if the type is a MPIR_RECV, it is a A_RHANDLE.

The send and receive operations are fundamentally asymmetric. The
asymmetry arises from the fact that sending is always initiated by the API
on behalf of the user, whereas the most important aspects of receiving are
initiated by the ADI, since data may appear there whether the user is pre-
pared to accept it or not. We attempt to allow the device great latitude in
the protocol it uses, including buffering on either the send or receive side,
no buffering at all, or a mixed protocol that may depend on the particular
message being dealt with. We will see this asymmetry when we discuss the

Table 2: Nonblocking send followed by wait

User Program API ADI

MPI_isend
A_alloc_send

allocate D_send_handle
A_post_send calls device
layer to start send operation
Initiates send operation,
possibly calling
D_get_totallen and
D_get_into_contig to
transfer data (Or may just
notify destination that
message available)

return
(User code runs) .
Interrupt; message sent; calls
D_mark_send_completed
Posts send completed in MPI
data structures
A_free_send_handle frees
device’s data structures
(User code runs)
MPI_status
MPI data structures show
send completed

MPI_wait
D_SHANDLE found marked
completed

free D_SHANDLE

return

message queues in Section 2.6.

2.2 Sending a message

Sending a message from one processor to another is the simplest operation;
as we will see, the sending side of this is simpler than the receiving side.
Table 2 shows one possible scenario from the point where the user calls
a nonblocking send routine (at the top) to when the user completes the
nonblocking send.

The API part of this process is responsible for setting up the initial
request and for converting user requests into the correct ADI requests. The
ADTI is responsible for actually transmitting the message. Note also that the
ADI and API work together to transfer the actual data; this allows the API
to provide a richer set of data layouts (for example, structures or vectors

with regular stride) that are not supported by the ADI. Also note that we
don’t specify the protocol used by the ADI to actually transfer the message;
this allows the ADI to optimize for different cases. The rest of this section
discusses the way in which a send operation is specified to the ADI.

The API requests the ADI to send a message by forming a Request
structure containing the information in Table 1. The API must then initial-
ize the ADI’s data area in this structure (the dev_shandle). This is done
with the macro A_alloc_send_handle(Request *r). The API’s Request
structure must contain a A_SHANDLE dev_shandle element. The ADI de-
fines A_SHANDLE; typically this is a structure but could be a pointer to a
structure or an index into a private memory location.

Next, the macro A_set_send_is_nonblocking(Request *r, int flag
) is called with flag = 1 if the send is nonblocking and flag = 0 otherwise.
This should set the appropriate field in the ADI’s dev_shandle.

We are now ready to post the message, that is, to ask the ADI to send
it. This is done with the macro A_post_send(Request *r)..

more on semantics of send?

When the API requires the send to be completed, it calls the macro
A_complete_send(Request *r, Status *s). The ADI does not return
from this call until the send has "completed" (note that completed in the
standard or ready mode means only that the message data buffer is available
for reuse). Note that while the ADI is handling a A_complete_send, it must
be prepared to handle incoming messages unrelated to this request.

When the API is finished with a send Request, it must tell the ADI to
free the dev_shandle with the macro A_free_send_handle(Request *r).

The API is allowed to use the same Request more than once as long as
only one requested is posted and not completed at any time.

2.2.1 Rationale for allocation of ADI handles

The ADI may prefer that its private data be handled in a special way.
The simplest, assuming that the ADI and API share address space, is for
the ADI’s information to be incorporated directly into the API Request
structure. This is shown in Example 1.

Example 1:

typedef struct { ... } A_SHANDLE;
#define A_alloc_send_handle(f)

Another option is for the ADI to have the device handle allocated dy-
namically with malloc (or some other memory allocator); this is shown in
Example 2.

Example 2:

Should this be
part of the API
Request?

an already com-
plete return flag
like post recv?

Need comments
on fairness, re-
quirements that
the ADI service

other requests

typedef struct { ... } *A_SHANDLE;
#define A_alloc_send_handle(f) \
f->dev_shandle=malloc(sizeof (A_SHANDLE)

If the ADI wishes to guarantee that the device data is hidden from the
API, it can instead give the API an index that the ADI will use to access the
data. This is shown in Example 3, where the function A_PRIVATE_SEND()
(not part of the ADI definition) is used to return an integer index.

Example 3:

typedef int A_SHANDLE;
#define A_alloc_send_handle(f) \
f->dev_shandle=A_PRIVATE_SEND()

The same approach is used for receive handles.

2.3 Receiving a message

Receiving a message is much like sending one (the most important differences
are discussed in Section 2.6 on the message queues). The progress of a
nonblocking receive is shown in Table 3. A comparison with Table 2 shows
that the only significant difference is the “check unexpected queue;” this
handles the case of the data having arrived before the user posts the receive
for the message.

The API requests the ADI to receive a message by forming a Request
structure containing the information in Table 1. Note that the modes (e.g.,
MPIR_STANDARD) apply only to send requests; a message can be received
regardless of the mode by which it was sent.! The API must then initial-
ize the ADI’s data area in this structure (the dev_rhandle). This is done
with the macro A_alloc_recv_handle(Request *r). The API's Request
structure must contain a A_RHANDLE dev_rhandle; element. The ADI de-
fines A_RHANDLE; typically this is a structure but could be a pointer to a
structure or an index into a private memory location.

Next, the macro A_set_recv_is_nonblocking(Request *r, int flag
) is called with flag = 1 if the receive is nonblocking and flag = 0 otherwise.
This should set the appropriate field in the ADI’s dev_rhandle.

We are now ready to post the message, that is, to ask the ADI to
receive it. This is done with the macro A_post_recv(Request *r, int
*is_complete).

If the receive blocking, this does not return to the API until the message
has been received. If the receive is nonblocking but the message is already

!This choice eliminates some possible optimizations, but it was the choice of MPI and
is more general than the choice where the mode of a receive must match the mode of the
send.

Should this be
part of the API
Request?

Table 3: Non-blocking receive

User MPI Program

MPI implementation

Device

MPI_irecv

(user code)

MPI_status

MPI_wait

check unexpected queue
(suppose not found)
A_alloc_recv_handle
set fields, particularly
“non-blocking”
A_post_recv calls device
layer to start receive
operation

return

mark receive completed in
MPI data structures
A_free_recv_handle
return

A_check_device

check MPI data structures
for status

return

(waiting on a particular
receive could transfer
control to device layer using
A_complete_recv) (could

poll)
return

posts receive at device level

(message arrives, interrupt
calls device)
D_msg_arrived returns
status of “posted”

device transfers data using
D_put_from_contig
D_mark_recv_completed

available (see the discussion of the unexpected message queue below), the
message may be received and the flag is_complete set to true to indicate
that.

When the API requires the receive to be completed, it calls the macro
A_complete_recv(Request *r, Status *status). The ADI does not re-
turn from this call until the receive has completed and the data is available
for the API and the user. The ADI must serve any other requests that
arrive while waiting to complete the specified request. The data in status
contains the tag, source, and length of the message in bytes.

When the API is done with a receive Request, it must tell the ADI to
free the dev_rhandle with the macro A_free_recv_handle(Request *r).

The API is allowed to use the same Request more than once as long as
only one requested is posted and not completed at any time.

2.3.1 Status of posted Receives

still need some code on test and cancel

Cancel (note that cancel must affect the queues as well, and may involve
some communication)

Probing for a message is discussed in Section 2.6.

2.4 Send-Receive

We should add this as an option...

Many devices can send and receive data simultaneously, and many al-
gorithms, particularly data-parallel ones, can be arranged to take advan-
tage of this. We allow a send and receive to be specified with macro

A_execute_send_recv(Request *rcv, Request *snd, Status *status).

However, we do not require that the ADI support this operation. Rather,
if the device can not support this, it does not define A_execute_send_recv.
The API is then required to submit separate send and receive requests. For
example, the code in the API might look like:

. code to build send and receive Requests
#ifdef A_execute_send_recv
A_execute_send_recv(snd, rcv, &status);
#else
A_post_recv(rcv);

A_post_send(snd);
A_complete_send(snd);
A_complete_recv(rcv, &status);
#endif

this is a change
from the imple-
mentation that
has no status

A_free_send_handle(snd);
A_free_recv_handle(rcv);

This (simultaneous send and receive) is our first example of an optional
functionality that the ADI can provide. We have made it the responsibility
of the API to provide the functionality when the ADI does not in order to
keep the ADI simpler and smaller.

2.5 Data transfer

Transfering data from the API through the ADI to another process is a
critical part of any device interface design. Unless great care is taken, an
interface may require that data be copied several times before being dis-
patched or received. In addition, the user’s data may not occupy contiguous
locations in memory; any full-featured API (such as MPI) will provide a
way for the user to specify how the data is laid out and the ADI and API
together must arrange to move it efficiently.

In describing the data transfer functions, we first describe those that
relate to contiguous data. We require only that the ADI handle contiguous
data but we make provisions for ADIs that can handle more elaborate data
layouts. However, our interface is designed so that data that is noncon-
tiguous in the API can be transferred by providing the ADI with contiguous
data. The design is complicated by the fact that we are striving to eliminate
unnecessary memory motion; this requires several different ways of moving
data between the API and the ADI.

The API is required to decompose any complex data layouts into layouts
that the ADI can manage. The ADI may need to make multiple calls to the
API to transfer data in this case. The ADI should attempt to minimize the
number of transfers, and, where possible, do them directly without using
the transfer routines provided by the API.

2.5.1 Transfers from the ADI

When a message is received, the ADI must transfer the data to the API in
the location that the API user has specified. There are several ways to do
this; the best choice depends on the exact situation. The easiest is for the
ADI to simply use the known location of the destination data and for the
ADI to transfer the data directly. If, for example, the data is contiguous,
then before the receive is posted, the macro A_set_recv_contig_buffer(
Request *r, void *buf, int len) can be called to set the location into
which the data should be stored. Here, buf is the user’s buffer location
and len is the length in bytes. The ADI then can use this information to
transfer the data into the user’s program.

A more general interface that is capable of handling arbitrary data lay-
outs is provided by having the ADI ask the API to perform the actual

10

This needs to be
ADDED

to the implemen-
tation (the macro
only; the code al-
ready does this)

transfers. This allows the API to provide arbitarily complex datatypes
without requiring the ADI to handle them. Four macros implement this
interface. The first, D_put_totallen(Request *r, int len), tells the
API the total length of the message in bytes (as a contiguous message).
D_put_totallen must be called before any other macro in this section.
Transfers are accomplished with either D_put_from_contig(Request *r,
void *buffer, int len), which provides len bytes starting at buffer, or
with D_put_into_contig(Request *r, (void **)buf, int len, int *ac-
tual_len), which provides to the ADI a buffer buf of length actual_len;
len is the requested length of the buffer. The ADI can use either of these
functions as it finds appropriate. The value of actual_len may be less
then the requested amount; in this case, the ADI must make repeated calls
to transfer the entire message to the API (for example, the API may be
using a fixed-length intermediate buffer). The API is not required to ac-
cept the entire message available in one call. Note that this design requires
the API to keep track of where the API is in a transfer. The final macro,
D_mark_recv_completed(Request *r), is used to indicate that the ADI
has completed any data transfers. After this point, the API should free its
Request structure as well as using A_free_handle(A_RHANDLE r) to release
the ADI’s handle.

For example, if the ADI reads packets of a fixed length, then the code
for processing data to the API might look something like

D_put_totallen(rcv, pkt.totallen);

while (data_to_read)
read packet into mybuf
D_put_from_contig(rcv, mybuf, pkt.len)

D_mark_recv_completed(rcv);

However, say the that the ADI reads a packet of fixed length, and if
the message is long, a single additional packet of variable length. Further
assume that the API prefers to copy from contiguous data to the final data
layout. In this case, the code might look something like

D_put_totallen(rcv, pkt.totallen);
D_put_from_contig(rcv, mybuf, pkt.len);
len = pkt.len;
while (pkt.totallen > len) {
D_put_into_contig(rcv, &mybuf2,
pkt.totallen - pkt.len, &actual_len);
len += actual_len;
read rest of message into mybuf2
}

D_mark_recv_completed(rcv);

This interface allows the API to provide any intermediate space for holding
messages, and to pick the size of those buffers. Larger buffers will probably

11

provide better performance, but the buffers need not limit the size of message
that can be received.

An alternative mechanism for the ADI to provide the data to the API is
to have the ADI hand the API a contiguous buffer that the API unpacks as
required. This allows the ADI to deliver the message without any further
exchanges with the API; this may be important if the ADI runs in a separate
process and a context switch is needed every time control is exchanged be-
tween the ADI and API. If the ADI prefers this mode of operation, it should
define A_RETURN_PACKED. In this case, the API should allocate a buffer into
which the message data can be placed by the ADI when the message arrives.

2.5.2 Transfers to the ADI

Transfers to the ADI are similar to those from the ADI. Just as for the receive
case, the simplest method is for the API to use A_set_send_contig_buffer (
Request *r, void *buf, int len) to set the location from which data
should be read. Here, buf is the user’s buffer location and len is the length
in bytes.

The general interface uses routines that are the natural counterparts of
the receive routines. The macro D_get_totallen(Request *r, int *len
), gets the length, in bytes, of the message for the ADI. This must be
called before any of the other macros described in this section (it will
probably also initialize some buffers). Transfers are accomplished with
either D_get_into_contig(Request *r, void *buffer, int len), which
tells the API to transfer 1len bytes to the buffer starting at buffer, or with

This needs to be
ADDED

to the implemen-
tation (the macro
only; the code al-
ready does this

D_get_from_contig(Request *r, (void **)buf, int len, int *actual_len

), which provides to the ADI a buffer buf of length actual_len; len is the
requested length of the buffer. The ADI can use either of these functions as
it finds appropriate. These transfer contiguous chunks of memory from the
API to the ADI. The value of actual_len may be less then the requested
amount; in this case, the ADI must make repeated calls to get the entire
message. In the case of D_get_from_contig, a value for len of -1 requests
the API to make as much data available as possible; the actual amount
should be returned in actual_len. The API is not required to make the
entire message available in one call even if the value of 1len is -1. Note that
this design requires the API to keep track of where the API is in a transfer.

The final macro, D_mark_send_completed(Request *r), is used to in-
dicate that the ADI has completed any data transfers. After this point,
the API should free its Request structure as well as using A_free_handle(
A_SHANDLE s) to release the ADI’s handle.

An alternative mechanism for the API to provide the data to the ADI
is to prepack the data into a contiguous buffer. This allows the ADI to
send the message without any further exchanges with the API; this may
be important if the ADI runs in a separate process and a context switch is
needed every time control is exchanged between the ADI and API. If the

12

ADI prefers this mode of operation, it should define A_PACK_IN_ADVANCE.

2.5.3 Noncontiguous data

An ADI that can directly handle more general layouts of data can provide en-
hanced performance, particularly on high-performance systems where data
can be moved between processors at rates similar to the rate that data can
be moved to and from local memory. Our ADI design allows an ADI to pro-
vide this functionality, and for the API to adapt itself to the ADI. An ADI
that can handle more sophisticated datatypes should define the appropriate
macros described in Table 4. These let the API know which datatype the
ADI can handle directly.

Still to be described: getting information about the datatypes

Optional:

e Copy to/from non-contiguous buffer

Vector (strided)
— Blocked (IOVEC)
— Hindexed

— MPI datatypes

e Provide non-contiguous buffer pointer

To handle non-contiguous data, the ADI needs to know the layout of
the data and the size of each element; for heterogeneous systems, it must
also know the datatype. This data is provided in the datatype field of the
Request.

need more on unpacking the datatype field

MPI_PACK and MPI_UNPACK analogues as D routines. Use
of source packing?

If the datatype is too complicated for the ADI (for example, it is a com-
plex structure), the the API can force the ADI to use the D_get_from_contig
et.al. routines.

2.6 Message queueing

In a message passing system, there are two queues: pending receives and
unexpected messages (ones that have been delivered, at least in part, but
for which the API has not yet issued a matching receive). Both the API
and the ADI interact with these queues. For example, when the API issues
a nonblocking receive, this adds an element to the posted receive queue.
When the ADI receives a message that matches this posted receive, the

13

Table 4: Macros for asserting that the device can handle additional
datatypes

Macro Meaning

A_DEVICE_DOES_STRIDED | Indicates that the device can handle MPI
“vector” type.

A_DEVICE_DOES_HINDEXED | Indicates that the device can handle MPI
“hindex” type.

A_DEVICE_DOES_ABSTRACT | Indicates that the device can handle the ab-
stract data types as described in the MPI sub-
set (no recursive datatype definitions).

ADI must modify that entry in the posted-receive queue to mark that the
message has been received. Because the ADI may operate asynchronously
(for example, as the result of an interrupt), great care must be taken to
ensure that the ADI and API do not attempt inconsistent modifications to
the queues. There are a number of solutions to this problem, including the
use of critical sections and multiple queues; the solution that we have chosen
is to give the ADI sole responsibility for the queues. In other words, when
the API needs to investigate any of the queues, it asks the ADI to do so
for it. The ADI is then responsible for ensuring that all operations on the
queues are safe. Since most basic message-passing devices do not provide
any queue management, we provide a suite of routines that can be used to
provide the required functions. All that the ADI implementor must do is to
ensure that the ADI implement a critical section around queue accesses if
the ADI operates asynchronously.

There are really two kinds of queues; one for posted receives and one for
unexpected recieves (that is messages that have arrived for which there is
no posted receive).

The rest of this section describes routines that the ADI may choose to
use in implementing the message queues. Since only the ADI may call these,
it need not use these. However, the discussion of these routines is a clear
way to describe the sort of message queue services that the ADI needs to
support, and to explain why we have the ADI perform all queue services.

Messages are added to the receive queue by the ADI with the routine
MPIR_enqueue(Queue *queue, Request *r) and removed with MPIR_dequeue (
Queue *queue, Request *r).

The unexpected-receive queue is a special case because the ADI adds ele-
ments to this queue without notifying the API. Before a receive can be added
to the posted receive queue, the ADI must check to see if that receive matches
an already received message by using the routine MPIR_search_unexpected_queue(
int source, int tag, int context_id, int *found, int remove, Request
*XrCV).

14

The macroD_msg_arrived(int from, int tag, int context_id, Re-
quest **rcv, int *is_posted) is called by the ADI when a message ar-
rives; this searches first the posted receive queue, and, if not found, inserts
the message into the unexpected queue. The two operations are done to-
gether to ensure that there can be no race condition caused by the API
posting the receive after the ADI checks the posted queue but before plac-
ing the message into the unexpected queue. A Request object is always
returned; the value of the flag is_posted indicates whether the item was on
the posted receive queue of was inserted into the unexpected receive queue.

If the message was not posted, then the API is responsible for allocat-
ing a Request and returning a pointer to it in rcv. When a matching
receive is finally posted and the ADI finds it in the unexpected queue (with
MPIR_search_unexpected_queue, the ADI will need to cause the Request
to be free. It does this with the macro D_free_unexpected(Request *rcv
). The API is encouraged to make this locally executable; that is, this macro
should simply set a flag to indicate that this Request should be freed later.
Of course, the API can define D_free_unexpected to immediately free the
Request.

2.7 Checking the queues

Many message-passing APIs provide a way to see if a message is already
available to be received, and to provide some information about that mes-
sage. This is called probing and consists of checking the unexpected receive
queue to see if a message with the specified matching criteria is available. A
successful probe returns the length of the message, and the values of the tag
and source (in case these were unspecified). Since probing is often used to
allow a user program to receive a message of unknown length, a successful
probe, followed by a receive with the same criteria, must return the same
message. This constrains the implementations of the unexpected receive
queue.

There are two kinds of probes: blocking and nonblocking. A blocking
probe does not return until a message that matches the specified conditions
is received; a nonblocking probe returns immediately and indicates whether a
matching message is available. A nonblocking probe is made with the macro
A_iprobe(int tag, int source, int context_id, int *found, Status *sta-
tus). The first three arguments have the same meaning as the entries in
the Request structure shown in Table 1. The found argument is set to 1 is
a message exists and 0 otherwise. If a message is found, then status is set
to contain the tag, source, and size in bytes of the message.

A blocking probe is made with the macro A_probe(int tag, int source,
int context_id, Status *status). The arguments have the same mean-
ing as for A_iprobe. One implementation of A_probe is

do {

15

A_iprobe(tag, source, context_id, &found, &status);
} while (!'found);

This implementation can be inefficient, since it causes the API to make
a large number of calls to the ADI. The ADI implementation of A_probe
should take advantage of the fact that the API is waiting for a successful
probe by itself waiting for a message to arrive, yielding the CPU to other
processes until a message arrives.

2.7.1 Rationale for Queue operations

An earlier specification of the ADI allowed both the API and ADI to insert
and remove elements from the queues. While this system works well when
the API and ADI execute in a single thread (without interrupt handlers),
it is hard to avoid race conditions when they operate in separate threads.
While the race conditions can be handled with the classical techniques of
critical sections, the implementation of these can have a significant impact
on the performance of the ADI. We choose to give the ADI sole control of
the queues because it needs to be notified when any element is added or
removed to the queue and thus little is saved by allowing the API to search
the queues directly.

2.8 Execution environment

This section covers all of the odds and ends that are needed to round out
the ADI definition. They cover both initializing the ADI and some services
that are not strictly message passing but which the ADI may be in the best
position to offer.

2.8.1 Controlling the ADI

Before any other ADI calls can be made, the ADI must be first started by
using the macro A_INIT(int *argc, char **xargv). The arguments argc
is a pointer to the number of command-line arguments and argv contains
the actual command-line arguments in the usual C language format. The
ADI may use some of these arguments to control its operation.

The A_INIT routine initializes the ADI. It is not required to start up
processes or otherwise load the parallel application itself, though it may do
SO.

When a program is ready to terminate normally, it should call the macro
A_END(). The ADI should return from this call; this is simply provided to
allow the ADI to release any resources that it may have allocated, and to
provide any additional services (such as informing the user of messages sent
but not received or received into the unexpected queue but never received

16

by the API). The default behavior of A_END should be to produce no output
at all.

An abnormal termination is achieved by calling the macro A_ABORT(
code). This should terminate the program and all processes associated
with it; where possible, it should have the effect of an abort(code).

2.8.2 Information

The macro A_mysize(int *size) returns the number of processes in the
parallel program. The macro A_myrank(int *rank) returns the rank of
the calling process; this rank is in the range 0, ..., size — 1.

The rest of the routines in this section are motivated by MPI; any im-
plementation of MPI must provide these features; they are often system-
specific, and need to be placed in some system-specific part of the imple-
mentation. We have chosen to combine all of these functions into the ADI in
order to make the ADI the only code that contains system-specific code to
port when moving a message-passing system such as MPI to a new system.

The macro A_NODE_NAME(char *name, int max_len) returns the name
of the processor in name, a buffer of length max_len. This name should allow
the identification of a particular piece of hardware.

In addition, the ADI should provide two routines to support a local time
on each processor. The macro A_WTIME() should return, as a double value,
the time in seconds since some event. This event is unspecified other than
to say that it is fixed during the lifetime of the program. For example, the
event can be a calendar time, such as January 1, 1970, or the time when the
process started. There is no specified relationship to the values returned by
A_WTIME on other processors.

The macro A_WTICK () returns the resolution of A_WTIME, also in seconds.

The macro A_tag_range(int *high) returns in high the maximum
value of tag that the ADI provides. It is expected that most ADI implemen-
tations will provide 31 or 32 bits of tag; however, an implementation may
provide fewer in exchange for greater efficiency. Note that MPI mandates a
tag range of at least 2715 — 1.

The macro A_machine_name(char *str, int max_len) provides the
mane of the processor running the calling task. This should identify a par-
ticular piece of hardware. The macro A_MAX_MACHINE_NAME_LEN gives the
maximum number of characters that may be required for A_machine_name.

2.8.3 Error handling

need to add here an error-handling interface and some default
behaviors

17

2.9 Miscellaneous

talk about polled versus interupt-driven devices. Note that may
want both depending on the environment

If the device can operate concurrently with the user code; in particu-
lar, if the device and the user code could access the same data structures
asynchronously, then the device must assert A_DEVICE_IS_ASYNCHRONQUS.

Often, the API may need the ADI to perform an operation before it can
continue; for example, completing the receipt of some message. The macro
A_check_device(int blocking) allows the API to ask the ADI to check
to see if the ADI has any work to do. If blocking is false, the ADI will
return once there are no operations to perform. If blocking is true, then
the ADI will not return until some event happens (for example, a message
arrives). The ADI is free to define what events will cause A_check_device
to return when called with blocking true.

3 Summary

These have yet to be updated

Note how small this set of routines/macros is.

In the file ‘Datomic.h’:
nothing?
In the file ‘A.h’":

typedef ... A_send_handle
typedef ... A_recv_handle
A_alloc_send_handle(D_send_handle)
A_alloc_recv_handle(D_recv_handle)
A_free_send_handle(D_send_handle)
A_free_recv_handle(D_recv_handle)

A_post_send(D_send_handle)
A_post_recv(D_recv_handle)
A_complete_recv(D_recv_handle)
A_check_device(blocking)

In the file ‘D.h’:

typedef ... D_send_handle
typedef ... D_recv_handle
D_mark_send_completed(D_handle)

18

D_message_arrived(src, tag, context_id,

D_recv_handle, status)
D_get_contig(D_send_handle, address, maxlen, actual_len)
D_put_contig(D_recv_handle, address, maxlen, actual_len)
D_mark_send_completed(D_send_handle)
D_mark_recv_completed(D_recv_handle)

D_check_mpi

4 Example Scenarios

This section contains several examples of sequences of events and calls hap-
pening at the user, API, and device layer. It is assumed that the API layer
has its own data structures consisting of handles to represent posted send
and receive operations, and an “unexpected queue” to hold messages that
arrive without posted receives for them. This set of examples is still incom-
plete, but the other sequences of events should not be difficult to infer from
these. Also, these scenarios show only one possible implementation (which
assumes that we can interrupt user code when the device wants service).
We will use MPI as the APT in these examples.

we need more discussion

add an alternate to 3: preposted nonblocking receive with no in-
terrupts of user process

5 Comments on implementation

5.1 Packet oriented devices
The device can copy directly from user space into the message packet’s

payload area. If the packet is formed by writing to a device FIFO, then the
data may be transferred directly to that location.

5.2 Active messages and remote copy
Active messages may be used to communicate tag, source, and context in-
formation about a message. Once a message is ready to be receive, it can be

moved with remote copy. On machines with hardware support for remote
copy, this can allow very fast communication.

5.3 Devices with local queues

A smart device may maintain its own queues of posted sends, receives and
unexpected messages. This allows the device to reduce the number of times

19

Table 5: Blocking receive

User MPI Program

MPI implementation

Device

MPI_recv

check unexpected queue
(suppose not found)
A_alloc_recv_handle

set fields, particularly
“blocking”

A_post_recv

calls device layer to start re-
ceive operation

transfer status info to user
status object
A_free_recv_handle
return

posts receive at device level
(waits, handles other
requests)

(message arrives)
D_msg_arrived returns
status of “posted”

device transfers data using
D_put_from_contig
D_mark_recv_completed

20

Table 6: Message arrives; receive is posted later

User MPI Program

MPI implementation

Device

MPI_irecv

MPI_status

MPI_status

A_alloc_recv_handle in
unexpected queue

checks unexpected queue;

finds message

A_complete_recv

return “not completed”

return “completed”

(message arrives)
D_msg_arrived called

D_msg_arrived returns
status of “not posted”
Device may transfer message
into unexpected queue at this
point, or it may defer data
transfer (to buffer on sender,
for example). Assume it
defers.

device fetches messages,
transfers into user space with
D_put_contig
D_put_from_contig

D_mark_recv_completed

21

Table 7: Chameleon routines used by sample device implementation

Routine Action

PlIbsend Blocking send

PIbrecv Blocking receive

Plnsend Nonblocking send

Plnrecv Nonblocking receive
PlIwsend Wait for nonblocking send
Plwrecv Wait for nonblocking receive

Plnprobe | Non-blocking probe by tag

PImytid Rank of calling task

PInumtids | Number of tasks in parallel program
Plilnit Start a Chameleon program
PliFinish | End a Chameleon program

that the device interrupts the user’s process when handling messages. Our
design allows for this by allowing the API to post a receive to the device. The
device may than handle a message that matches a posted receive (provided
that it can store the message) without interrupting the user’s process. The
APT discovers that the message has been handled when the user process
requests that the message be completed (by calling A_complete_recv) or
perhaps by looking at the message completed flag (set when the device called
D_mark_recv_completed).

In order for this to work, the device needs to have access to the location
of the destination buffer when A_post_recv is called.

6 A Portable Implementation

In this section we show a complete implementation of the device code in
terms of an existing message-passing system of the abstract device interface.
The code is available, with the MPI API, from info.mcs.anl.gov in file
‘pub/mpi/mpich.tar.Z’.

This code uses Chameleon [?] for the message-passing calls. Chameleon
is a portable message-passing system that is allows the use of many popular
transport layers, including p4, PVM, Intel NX, and IBM’s EUI. Only a small
set of calls is used; these are described in Table 7.

It is interesting that we can specify a portable ADI with good perfor-
mance.

For the sake of concreteness, we propose three files:

Datom.h A set of definitions of the MPI “atomic” datatypes. Many of
these may be enum types.

22

what more do we
want to say?

A.h A set of macros (both data structures and operations) that the MPI
implementation (the API layer) will rely on. Their definitions are to
be provided by the device.

D.h A set of macros that the device will invoke to interact with the MPI
implementation. Their definitions will be provided by the MPI imple-
mentation.

This device implementation maps all messages into messages with tag
zero (for the first A_PACKET_SIZE bytes) and with tag source+1 for any
part of a message that is longer.

An alternate implementation would use tags from zero to 2°31 — (1 + p)
(for p processors) for any message in the initial communicator/context and
tag value between 0 and 2°31 — (1 4+ p) and the above tag mapping for
all other messages. This gives an implementation where existing message-
passing programs would run with little if any overhead, since they would
map directly to the underlying message-passing system. We have not im-
plemented this since it discourages the use of contexts and gives an artificial
performance advantage to “old-style” message-passing programs. We be-
lieve that native implementations to the abstract device interface will suffer
only an insignificant performance impact, specifically, the cost of sending the
context id and including the context id in the message matching criteria.

References

23

